

AFRL-IF-RS-TR-2005-250
Final Technical Report
June 2005

TECHNICAL SUPPORT FOR THE ACTIVE
TEMPLATES PROGRAM

SoftPro Technologies, Incoporated

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. P014

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-250 has been reviewed and is approved for publication

APPROVED: /s/

DALE W. RICHARDS
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES W. CUSACK, Chief
 Information Systems Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JUNE 2005

3. REPORT TYPE AND DATES COVERED
Final Feb 01 – Mar 05

4. TITLE AND SUBTITLE
TECHNICAL SUPPORT FOR THE ACTIVE TEMPLATES PROGRAM

6. AUTHOR(S)
Lawrence G. Lafferty and Carl S. Lizza

5. FUNDING NUMBERS
C - F30602-01-C-0018
PE - 63760E
PR - ATEM
TA - P0
WU - 14

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SoftPro Technologies, Incorporated
515 Crossville Road
Suite 110
Roswell Georgia 30075

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFSB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-250

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Dale W. Richards/IFSB/(315) 330-3014/ Dale.Richards@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The DARPA Active Templates (AcT) program was established to develop a scalable, simple, distributed software
infrastructure for mission planning and execution, in essence, a kind of "spreadsheet" for planning, information
monitoring, and execution replanning. This effort addressed the concept of spreadsheets for planning by developing a
suite of forms-based planning tools. In particular, the objective was to enable users to create and modify forms with
sharable information elements to support real-time collaboration and a core technology was implemented to facilitate
collaborative form development. The resulting technology was then used as a foundation for a number of demonstration
applications, including weather report visualization, command logs, and more importantly, a general form-building
application called CommandLink. CommandLink provides a simple, intuitive tool for users to support planning with
unique features that enable real-time collaboration, reusability of information elements, and connectivity to external
information sources.

15. NUMBER OF PAGES
62

14. SUBJECT TERMS
Active Templates, Collaborative Forms, Mission Planning, Command Link, Active Forms

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-

89)Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1. SUMMARY ..1
1.1 PROGRAM OBJECTIVES..1
1.2 REPRESENTATIVE PROGRAM ACTIVITIES ..1
1.3 ACTIVE TEMPLATES APPLICATIONS ..2

1.3.1 WeatherWrite...2
1.3.2 The Joint Operations Center (JOC) Log..2
1.3.3 Decision Point Editor ..2

1.4 COMMANDLINK ..3
1.4.1 CommandLink Form Designer ..4
1.4.2 Forms and Templates...4

1.5 FORM CLIENT..4
1.6 SERVICES ..4
1.7 LESSONS LEARNED..5

2. INTRODUCTION..6
2.1 OVERVIEW ..6

3. HISTORICAL REVIEW...6
3.1 PROGRAM OBJECTIVES..6
3.2 REPRESENTATIVE PROGRAM ACTIVITIES ..7
3.3 ACTIVE TEMPLATES ACTIVITIES ...9

3.3.1 WeatherWrite...9
3.3.2 The Joint Operations Center (JOC) Log..10
3.3.3 CommandLink..12
3.3.4 Decision Point Editor ..13

4. TECHNICAL ACCOMPLISHMENTS...14
4.1 COMMANDLINK ..14

4.1.1 CommandLink Feature Overview ..16
4.1.2 CommandLink Form Designer ..16
4.1.3 CommandLink Form Components ...17

4.1.3.1 Form Components.. 18
4.1.3.2 Containers .. 19

4.1.4 Forms and Templates...20
4.1.5 Workspaces and Workgroups ..20

4.2 FORM CLIENT..20
4.3 SERVICES ..22
4.4 FORM SETS..22
4.5 IMPORTANT COMMANDLINK CONCEPTS SUMMARY..22

5. LESSONS LEARNED ...25
5.1 PROGRAMMING LANGUAGES AND METHODOLOGIES ..25

 ii

5.2 USABILITY...27
5.3 COLLABORATION ..27
5.4 STRUCTURED DATA MODEL..28
5.5 EXTERNAL SERVICES AND PROGRAMS ..28

APPENDIX A: COMPARATIVE PRODUCT ANALYSIS ..30

APPENDIX B: REQUIREMENTS SPECIFICATION ...45

 iii

Table of Figures

FIGURE 1: A NEW KIND OF INFO-COMPONENT..7
FIGURE 2: SOFTOOLS..8
FIGURE 3: SYSTEM ARCHITECTURE ...9
FIGURE 4: WEATHERWRITE DISPLAY...10
FIGURE 5: THE JOC LOG ...11
FIGURE 6: COMMANDLINK FEATURES..12
FIGURE 7: DECISION POINT EDITOR...13
FIGURE 8: COMMANDLINK FORM DESIGNER..17
FIGURE 9: FORM COMPONENTS AND CONTAINERS ...18
FIGURE 10: COMMANDLINK CLIENT CONTROL PANE ..21
FIGURE 11: CLIENT FORM EXPLORER...21
FIGURE A-1: ACTIVE TEMPLATES HISTORICAL CONTEXT ..34
FIGURE A-2: A TYPICAL ADOBE FORM ..36
FIGURE A-3: ADOBE FROM DESIGNER INTERFACE...37
FIGURE A-4: INFOPATH DESIGN MODE..38
FIGURE A-5: FORM DESIGN FROM AN ODBC SOURCE ...39
FIGURE A-6: MILITARY PLANING IS PREDOMINANTLY MANUAL ...41
FIGURE A-7: AN ACTIVE FORM FOR A COMMAND CENTER..42
FIGURE A-8: ACTIVE FORMS AUTHORING MODE...43
FIGURE A-9: FORMS SERVICE INTERFACE ..44
FIGURE B-1: TYPICAL COMMANDLINK FORM ..49

List of Tables

TABLE B-1: FORM ELEMENT CONFIGURATION SETTINGS ..51

 1

1. Summary
The DARPA Active Templates (AcT) program was established to develop a scalable, simple,
distributed software infrastructure for mission planning and execution, in essence, a kind of
“spreadsheet” for planning, information monitoring, and execution replanning. The effort
documented in this report addressed the concept of spreadsheets for planning by developing a
suite of forms-based planning tools. In particular, the objective was to enable users to create and
modify forms with sharable information elements to support real-time collaboration. The notion
of “spreadsheets for planning” came to be expressed as a need for forms-based planning tools.
In particular, the objective was to enable users to create and modify forms with sharable
information elements to provide real-time collaboration.

1.1 Program Objectives
As described in its 1999 Broad Agency Announcement (BAA) solicitation, the Active Templates
(AcT) program was established to develop a “scalable, simple, distributed software infrastructure
for mission planning and execution… a kind of ‘spreadsheet’ for planning, information
monitoring, and execution replanning.”

The metaphor of “spreadsheets for planning” was the dominant guiding idea throughout the
program. The conventional spreadsheet metaphor has a number of useful attributes including

• Ease of use – ordinary users can create and use them,

• Flexibility – spreadsheets can be adapted for many different kinds of problems

• Problem solving power – complex and quite powerful spreadsheets can be developed.

1.2 Representative Program Activities
The Active Program was different from some other DARPA programs due to its emphasis on
both research and the development of deployable applications for real-world users. Special
Operations planning staffs at Ft. Bragg, NC were the primary (but not the only) customers for the
program. The earliest application developed (even before the notion of active forms was clearly
expressed) was known as SOFTools.1 This software provided two capabilities: a
Synchronization Matrix Editor and an Execution Checklist.

1 SoftPro provided some maintenance support for SOFTools but did not develop the application.

 2

1.3 Active Templates Applications
SoftPro, like a some of the other AcT contractors, developed a number of prototype applications
for the Special Operations Forces (SOF) community, some gaining favor in the user community
and some not. Several of these applications were useful tools in their own right, but not true
examples of the active forms concept.

1.3.1 WeatherWrite
WeatherWrite was an application developed for weather officers. During mission planning and
execution, the weather staff is responsible for preparing a weather status briefing that
summarizes conditions at the various locations “touched” by the mission. Preparing the weather
briefing is a time-consuming and tedious task, perhaps taking a couple of hours each day.
WeatherWrite was intended to simplify the process.

1.3.2 The Joint Operations Center (JOC) Log
Command staffs need to maintain logs as events unfold during a mission. In the past, a
command staff might use a tool such as Microsoft® Word or Microsoft® Excel for keeping a log.
If the log needed to be shared in real-time, Microsoft® NetMeeting could be used as a
collaboration environment. This kind of solution does not always work well – for example,
Microsoft® NetMeeting is not always that reliable.

The JOC Log is a rudimentary active forms application designed to make it easier for command
staffs to keep shared logs. Conceptually, the JOC Log is a very simple application. Users can
specify the header and row-column layout to create logs such as the example below. Though a
simple application, the JOC was well-received by users, was deployed, and is being used in the
SOF community.

1.3.3 Decision Point Editor
Decision making is one of the central activities in a command center. Some SOF command
staffs have formalized the process by representing decision making in terms of events,
conditions, options and ramifications. An event, for which a decision is to be made, is
dependent upon a series of conditions being satisfied. Options exist for conditions not met, and
the selection of options has mission ramifications which must be understood.

To support this structured decision-making process, SoftPro developed a prototype Decision
Point Editor. The graphical representation used in this application is similar to
Microsoft®PowerPoint graphics often developed by command staffs. Each node in the
representation has supporting information. The form itself is actually a collaborative active form
which can be used from either the Decision Point Editor or CommandLink application. The
status for each condition under consideration is also summarized.

 3

1.4 CommandLink
Over a period of about 3 years, SoftPro developed increasingly more capable prototypes of
CommandLink. We concentrated first on implementing a basic human interface for form design,
integrated with a client that allows users to view and enter data collaboratively. CommandLink’s
collaboration model is distinctly different from document-centric paradigms: Assume that two
users are viewing the same form. If one user changes a value on the form, that change is
transmitted immediately to the other user. Both users see the same data regardless of changes
made to the form. Document check-in/check-out or manual form updates are not required;
CommandLink synchronizes data views automatically.

During the course of the program, we addressed a number of other issues. For example, we

• Refined the component set available for form construction, including the difficult tasks of
implementing components such as date/time display, timer and countdown clocks.
Components like these provide features tailored for mission planning and execution.

• Developed access control methods that work on an individual attribute basis – much
more fine-grained that conventional document level protection.

• Implemented a form services capability. Form services provide a means to populate a
form with either information from a data source, from web services (such as Fetch Agent
Platform2), and external programs.

CommandLink version 2.0, a fully tested and fully functional application, was released in June,
2004. This version was well received by users and was selected as a candidate for deployment.
In late summer of 2004, SoftPro received additional funding, through a US Special Operations
Command Advanced Concepts Technology Demonstration (ACTD), to prepare CommandLink
for deployment. The first order of business was to re-implement CommandLink in Java, a
language more suited for deployed systems.

The Java version of CommandLink has the key features of the initial Tcl/Tk3 version plus many
additional capabilities. Three separate components have been developed:

• A Form Designer which has a more conventional look and feel, much like Adobe®
Photoshop or Microsoft®PowerPoint.

2 Fetch Technologies, Inc., El Segundo, CA 90245

3 The Tool Command Language/Toolkit (Tcl/Tk) is an interpreted scripting software language available as open
source.

 4

• A Form Client for using forms (i.e., viewing forms and editing form content).

• A Java Applet which allows users to view forms and edit form content through a
browser interface.

1.4.1 CommandLink Form Designer
CommandLink Form Designer is a tool for enabling users (not programmers) to create, share,
modify, and reuse forms. It also provides some controls so that shared forms cannot be
arbitrarily changed without their authors' consent.

We distinguish between a form's structure and its content. The structure of a form is defined by
the set of display elements it contains (its components) and how these display elements are
organized on the form. The content of a form is defined by the data values for each of these
display elements. The Form Designer manages form structure. It also provides for access
control to the data values through access permissions. These access permissions can provide for
read-only access to data and to hide a component completely from selected users.

1.4.2 Forms and Templates
CommandLink distinguishes between forms and form templates. Forms function analogous to
paper forms. Users can enter data in CommandLink forms, share forms, link data on one form to
another form, and so on. Form templates are reusable patterns that can be used for designing
new forms. Once a template has been created from an existing form or a container on a form, it
can be used again to create forms or add repeated sections of data to a form.

1.5 Form Client
The Form Client is an application to allow users to interact with the data on a form. The Form
Client may be accessed as either the standalone application installed in the CommandLink suite,
or as a browser applet from a server using programs such as Microsoft® Internet Explorer or
Netscape.

1.6 Services

Services provide a means for accessing external data so that it can be displayed on forms.
CommandLink provides two basic services and its capabilities can be extended using custom
services. Custom services are created by programmers to provide access to other software such
as intelligent software agents that perform calculations, make recommendations, or recognize
patterns.

 5

1.7 Lessons Learned
The lessons learned over the course of the program spanned the gamut from requirements
definition to development languages and methodologies to collaboration models to technology
maturity. A key lesson was that the programming language selected for development of research
prototypes was quite effective, but fell far short of supporting a deployable and maintainable
software product. The research paradigm of rapid prototyping and requirements discovery
proved unsuitable and inefficient when applied to standard processes for product definition,
development, test and deployment.

 6

2. Introduction

2.1 Overview
This document is the Final Report for SoftPro’s activities on the Active Templates program. It
addresses the following topics:

• Chapter 2 reviews SoftPro’s Active Templates activities,

• Chapter 3 discusses technical accomplishments, and

• Chapter 4 describes lessons learned.

3. Historical Review
This section reviews the objectives and key activities in the Active Program viewed from
SoftPro’s particular – and limited -- vantage point. Note that the following description is not a
comprehensive summary of the program.

3.1 Program Objectives
As described in its 1999 Broad Agency Announcement, the Active Templates (AcT) program
was established to develop a “scalable, simple, distributed software infrastructure for mission
planning and execution… a kind of ‘spreadsheet’ for planning, information monitoring, and
execution replanning.”

The metaphor of “spreadsheets for planning” was the dominant guiding idea throughout the
program. Conventional spreadsheets have a number of useful attributes including

• Ease of use – ordinary users can create and use them,

• Flexibility – spreadsheets can be adapted for many different kinds of problems

• Problem solving power – complex and quite powerful spreadsheets can be developed.

The notion of “spreadsheets for planning” came to be expressed as a need for forms-based
planning tools. Lt. Col Doug Dyer, the DARPA AcT Program Manager, provided the following
example of a new kind of forms-based “info-component” in a briefing prepared early in
November, 2000 (see Figure 1). Note in particular the following elements in the vision:

1. Users can create and modify forms. The intention was to give users considerably
greater control over their information space.

 7

2. Information elements are share-able. The notion of share-able information
elements implies a collaboration model.

3. Forms are structure as sets of attribute-value pairs. This well-defined structure
makes it possible for forms to be linked to external data sources and problem
solvers.

Figure 1: A New Kind of Info-Component

3.2 Representative Program Activities
The Active Templates Program was different from some other DARPA programs due to its
emphasis on both research and development of deployable applications for real-world users.
Special Operations planning staffs at Ft. Bragg in Fayetteville, NC, were the primary (but not the
only) customers for the program. The earliest application developed (even before the notion of
active forms was clearly expressed) was known as SOFTools.4 This software provided two
capabilities: a Synchronization Matrix Editor and an Execution Checklist. Figure 2 illustrates a
notional synch matrix in the foreground and the corresponding checklist in the background.

4 SoftPro provided some maintenance support for SOFTools but did not develop the application.

 8

Figure 2: SOFTools

Note that while SOFTools is not an example of an active forms application, it is a powerful and
useful application that provides good features for SOF planners. SOFTools, which began as a
research prototype, was successfully transitioned.

At about the same time that the core active forms concepts were envisioned (November, 2000),
Lt. Col Dyer also began describing a system architecture that showed a number of applications
communicating via a common structured data model (see Figure 3). Note first of all the
prominent place that the structured data model holds; the data model became a key technical
issue during the program. Secondly, note that the illustrated applications were real prototypes:
the various contractors on the team had made considerable progress

 9

3.3 Active Templates Activities
Like a number of other AcT contractors, SoftPro developed a number of prototypes, some
gaining favor in the user community and some not. Several of these applications were like
SOFTools in that they were useful tools but not true examples of the active form concept.

Figure 3: System Architecture

3.3.1 WeatherWrite
WeatherWrite was an application developed for weather officers. During mission planning and
execution, the weather staff is responsible for preparing a weather status briefing that
summarizes conditions at the various locations “touched” by the mission. Preparing the weather
briefing is a time-consuming and tedious task, perhaps taking a couple of hours each day.
WeatherWrite was intended to simplify the process.

Terminal Aerodrome Forecasts (TAFs) provide the inputs for the briefing. A TAF is simply a
weather forecast, expressed in a coded format that makes sense to meteorologists (and little sense

 10

to everyone else). TAFs provide considerable information related to visibility, wind conditions,
turbulence, icing, and so on. WeatherWrite parses the TAFs for each mission location and
generates a graphic that is similar to the visual aid meteorologists would show the Commander.
As shown in Figure 4, the graphic is a color-coded, time-based display that shows the predicted
status (green-yellow-red) at each location. The constraints used for calculating weather status
can be adapted to accommodate various kinds of aircraft and vehicles since weather is so
important for ingress into and egress out of a mission location.

Figure 4: WeatherWrite Display

3.3.2 The Joint Operations Center (JOC) Log
Command staffs need to maintain logs as events unfold during a mission. In the past, a
command staff might use a tool such as MS Word or MS Excel for keeping a log. If the log
needed to be shared in real-time, MS NetMeeting could be used as a collaboration environment.
This kind of solution does not always work well – for example, MS NetMeeting is not always
that reliable.

 11

The JOC Log is a rudimentary active forms application designed to make it easier for command
staffs to keep shared logs. Conceptually, the JOC Log is a very simple application. Users can
specify the header and row-column layout to create logs such as the example in Figure 5.

Figure 5: The JOC Log

What makes the JOC Log an interesting application? First of all, the tool is designed to be much
more reliable than MS Excel running over MS NetMeeting. SoftPro put considerable effort into
issues such as connectivity so that users always know the status of their connection to the master
form – certainly not a difficult technical issue but an important feature for real use.

More importantly, the JOC Log is interesting because of its collaboration model. The first
releases of the tool provided “Wild, Wild West” collaboration – anyone could change anything
on a log. Users initially thought this openness was desirable, but it became clear pretty quickly
that boundaries needed to be established for collaboration. The collaboration protocol that
evolved had considerable influence on later active forms use. In retrospect, the principles are
fairly simple:

• The originator of a log session can see everything posted to the log.

• Participants in a session “own” the rows in which they enter data.

• Participants can change data in the rows they own, but they cannot alter data in rows
owned by other people.

• Participants can “hide” rows from users if they choose.

 12

The lesson learned is that collaboration has to be bounded and the controls applied to a form
need to be very fine-grained. For a log, “fine-grained” control means that every row needs
protection.

Though a simple application, the JOC Log was well-received by users, was deployed, and is
being used in the SOF community.

3.3.3 CommandLink
The JOC Log represents a partial step towards the notion of active forms. Logs are configurable
and they are collaborative, but they are not really the new kind of “info-component” that Lt. Col
Dyer envisioned. CommandLink, however, does provide users with the capabilities expected
from an active form. SoftPro’s objectives for CommandLink are illustrated in Figure 6.

Figure 6: CommandLink Features

 13

3.3.4 Decision Point Editor
Decision making is one of the central activities in a command center. At least some SOF
command staffs have formalized the process by representing decision making in terms of events,
conditions, options and ramifications. An event, for which a decision is to be made, is
dependent upon a series of conditions being satisfied. Options exist for conditions not met, and
the selection of options has mission ramifications which must be understood.

To support this structured decision-making process, SoftPro developed a prototype Decision
Point Editor, shown in Figure 7. The graphical representation shown in the top left of the figure
is similar to MS PowerPoint graphics often developed by command staffs. Each node in the
graph has supporting information like that shown in the form on the top right of the figure. This
form is actually a collaborative active form which can be used either from the Decision Point
Editor or from CommandLink. The bottom section in Figure 7 summarizes the status for each
condition under consideration.

The Decision Point Editor was implemented as a prototype and was demonstrated to potential
users. Although customers in the SOF community were considering its selection for refinement,
hardening, and deployment, as of December 2004 this had not occurred.

Figure 7: Decision Point Editor

 14

4. Technical Accomplishments
Development of CommandLink is SoftPro’s primary technical accomplishment in the Active
Templates Program. This section focuses solely on this application.

4.1 CommandLink
Over a period of about 3 years, SoftPro developed increasingly capable prototypes of
CommandLink. We concentrated first on implementing a basic human interface for form design,
integrated with a client that allows users to view and enter data collaboratively. CommandLink’s
collaboration model is distinctly different from document-centric paradigms. Assume that two
users are viewing the same form. If one user changes a value on the form, that change is
transmitted immediately to the other user: both users see the same data regardless of changes
made to the form. Document check-in/check-out or manual form updates are not required;
CommandLink synchronizes data views automatically.

During the course of the program, we addressed a number of other issues. For example, we

• Refined the component set available for form construction, with a surprising level of
effort required to implement components such as date / time display, timer and
countdown clocks. Components like these provide features tailored for mission planning
and execution.

• Developed access control methods that work on an individual attribute basis – much
more fine-grained that conventional document level protection.

• Implemented a form services capability. Form services provide a means to populate a
form with either information from a data source, from web services (such as Fetch), and
external programs.

All of this development was done using a scripting language known as Tcl/Tk. Originally
developed as a scripting language for utility use, Tcl/Tk has evolved into a surprisingly capable
language. It has a moderately broad user community and is powerful enough for developing
fairly complex applications. Since it is an interpreted scripting language, Tcl/Tk is a good choice
for rapid development and prototyping.

Unfortunately, Tcl/Tk has annoying shortcomings, particularly if the development goal is to
build robust, deployable applications. Testing can be a chore – Tcl/Tk is interpreted, not
compiled, and there is no way to discover coding errors except through repeated testing. Beyond
a certain threshold for robustness, testing costs can outweigh the benefits provided through rapid
development.

 15

In addition, Tcl/Tk is not an object-oriented language, and structuring large programs can be a
challenge. To address this problem, SoftPro developed a set of object-oriented extensions to
Tcl/Tk.

Objects consist of two primary aspects: data and behavior. Tcl/Tk arrays were utilized to store
the data for each instance of a class. Interestingly, arrays in Tcl/Tk can have arbitrary indices,
and this was leveraged by using field names as indices. Each instance has its own array for data
storage and it is named using the name of the instance pointer. In order to provide clean access
to class behavior, a new function is generated for the instance that also has the same name as the
instance pointer. When a “Tk-let” is defined, a smart function is automatically created that looks
within the class namespace to automatically determine the set of methods that are available. This
function is invoked through the instance pointer function to provide access to the appropriate
methods by name.

As requirements for CommandLink evolved, we discovered other Tcl/Tk shortcomings, some of
which severely limited CommandLink capabilities. For example, the language’s printing support
is primitive, meaning that we were not able to implement useful form printing. Also, Tcl/Tk
does not provide the functions needed for deploying applications through browsers. Users made
it clear that a web-based version of active forms would be desirable.

CommandLink version 2.0, a fully tested and fully functional application, was released in June,
2004. This version was well received by users and was selected as a candidate for deployment.
In late summer, SoftPro received additional funding, through a US Special Operations Command
Advanced Concepts Technology Demonstration (ACTD) program, to prepare CommandLink for
deployment. The first order of business was to re-implement CommandLink in Java, a language
more suited for deployed systems.

The Java version of CommandLink has the key features of the Tcl/Tk version plus many
additional capabilities. Three separate components have been developed:

• A Form Designer which has a more conventional look and feel, much like Adobe
Photoshop or MS PowerPoint.

• A Form Client for using forms (i.e., viewing forms and editing form content).

• A Java Applet which allows users to view forms and edit form content through a
browser interface.

In addition, the CommandLink Form Server originally delivered in June was enhanced to support
the Java applet. In January 2005, the Java release, CommandLink version 3.0, was being tested
and evaluated by the SOF community as a candidate for deployment.

 16

4.1.1 CommandLink Feature Overview
CommandLink is a tool for gathering, displaying, and sharing information. It's been designed to
solve many of the problems we face when planning an activity or solving a problem
collaboratively. All too often, the information we need is buried in databases or in written
reports. Assuming that an application exists for getting what we need, we usually do not have
any control over how information is organized and presented. In addition, we typically do not
have any really useful methods for sharing information with other people working with us.

Put simply, CommandLink is a tool for getting the information you need, the way you need it.

Active forms are the basic building blocks in CommandLink. These forms are like the paper
forms we use all the time -- though they are much more powerful and, hopefully, a lot less
annoying to use. Active forms are "active" because they can be:

• Created and customized by users

• Stored as templates and reused as needed

• Linked to data sources for populating fields

• Shared with other people, with controls over who sees what data

• Connected with databases, web services, and custom services that may interact
with intelligent software agents that perform calculations, make
recommendations, recognize patterns and so on.

CommandLink has 2 major components: the Designer to create forms; and the Client to interact
with the data on forms.

4.1.2 CommandLink Form Designer
CommandLink Form Designer is a tool for enabling users (not programmers) to create, share,
modify, and reuse forms. It also provides some controls so that shared forms cannot be
arbitrarily changed without their authors' consent.

We distinguish between a form's structure and its content. The structure of a form is defined by
the set of display elements it contains (its components) and how these display elements are
organized on the form. The content of a form is defined by the data values for each of these
display elements. The Designer manages form structure. It also provides for access control to

 17

the data values through access permissions. These access permissions can provide for read-only
access to data and to hide a component completely from selected users.

There are 4 sections in the Designer window as illustrated in Figure 8. In the upper left of the
figure is a navigation pane displaying the components on a form in hierarchical manner. You
may select a component to edit by clicking on it in this pane. Below it is the Properties pane
which lists all the changeable properties of the selected component or form. In the upper right is
a toolbar displaying selectors and available components. The main display below the toolbar is
the form canvas for creating and editing the form.

Figure 8: CommandLink Form Designer

4.1.3 CommandLink Form Components
Forms are composed of individual components and containers which are used for holding and
organizing these elements. The simple form shown below illustrates the distinction between

 18

components and containers. Components of similar data type can be linked directly or as part of
a mathematical calculation. This linkage can simply make the same data available in multiple
forms, or abstract the data to a different representation. A common example of abstraction is
linking a numeric data element to a status component with color ranges set on the data value – a
useful feature for creating dashboards.

Figure 9: Form Components and Containers

4.1.3.1 Form Components
Form components are the individual data elements that are assembled into a form. The current
library of components is described below, but new components are easily developed using the
component class structures in the Active Forms library.

Alphanumeric:

• Label - a multi-line alphanumeric text data item useful for headings, instructions, etc.
• Entry - a single-line alphanumeric data item with an optional data entry mask.

 19

• Text - a multi-line alphanumeric data item

Numeric:

• Numeric - a numeric data item
• Scale - a sliding scale over a user-specified range

Date / Time:

• Date - a user-formatted date field that provides a calendar for entry with selectable
military or civilian time zones.

• Clock - a user-formatted clock display selectable military or civilian time zones.
• Timer - an elapsed time counter.
• Countdown Clock - A clock that counts down to a future, user-specified date/time.

Selectors:

• CheckBox - a labeled check box
• RadioButtons - a set of radio buttons with user-defined choices allowing only one active

selection
• ComboBox - a drop-down list of user-defined selectable items

Miscellaneous Components:

• Hyperlink - a descriptive link to a URL
• Image - a scaleable image
• Status Indicator - a multi-colored indicator that may be connected to a value to change

color automatically

Tables and Logs:

• Table- a multi-column array of cells of several component types
• Table Log - a table with special properties for control of row ownership and behavior

4.1.3.2 Containers
Containers are aggregators of form components. The form itself is a top-level container. In
addition to providing means to organize components, containers are also savable as templates
making them reusable for creation of new forms or form elements.

• Frame: a general purpose container that can be inserted anywhere on a form. A frame is
most useful to collect similar data elements, such as an address.

 20

• Notebook: a container which has one or more pages, each of which is a container itself.
In the example shown above in Figure 9, the notebook has four pages where three pages
may be similar in structure and the fourth completely different.

4.1.4 Forms and Templates
CommandLink distinguishes between forms and form templates. Forms are exactly what one
would expect: they are like paper forms. Users can enter data in CommandLink forms, share
forms, link data on one form to another form, and so on.

Form templates are reusable patterns that can be used for designing new forms. Once a template
has been created from an existing form or a container on a form, it can be used again to create
forms or add repeated sections of data to a form. For example, we might create an Address
template that could be used repeatedly in forms that require a person or company data.
Templates can be stored either locally (on the user's machine) or on a server and are editable in
the Designer.

4.1.5 Workspaces and Workgroups
In CommandLink, active forms provide a way to gather, display and share information.
CommandLink's user interface consists of a set of tools for creating, storing, organizing, and
sharing forms.

Forms can be stored in either workspaces or workgroups:

• A workspace is a container for storing forms on a user's own machine. A workspace
is like a top-level directory. Workspaces contain folders and forms. Forms in
workspaces are private; no one else can see the data on these forms.

 • A workgroup is a container for storing forms on a shared CommandLink server.
Forms in workgroups are public; subject to access permissions, other people can see
and change the information on these forms.

4.2 Form Client
The Form Client is an application to allow users to interact with the data on a form. The From
Client may be accessed as either the standalone application installed in the CommandLink suite,
or as a browser applet from a server using programs such as Internet Explorer or Netscape.

 21

The Client control pane, Figure 10, displays local workspaces and the workgroups available on
the form server to which you have connected. From this display, a selected workgroup or
workspace will open a Form Explorer display as illustrated in Figure 11.

Figure 10: CommandLink Client Control Pane

Figure 11: Client Form Explorer

 22

This Explorer window displays the open workspace or workgroup, its folders and forms, and a
form display pane to right. When a form is selected in the Explorer pane, it is opened in the form
display area as a tabbed window. Data and controls on the form are fully accessible to the user.
The Explorer pane also provides for folder and form management – adding, deleting, or
renaming folders and forms.

4.3 Services
Services provide a means for accessing external data so that it can be displayed on forms.
CommandLink provides two basic services and its capabilities can be extended using custom
services. Custom services are created by programmers to provide access to other software such
as intelligent software agents that perform calculations, make recommendations, or recognize
patterns.

The two basic CommandLink services include web services, such as Fetch Agent Platform
agents, and access to Open Data Base Connectivity (ODBC) data sources. The user is provided
wizards to rapidly create services that access ODBC data sources to provide discrete fields of
data or tables of records from queries to the data source. The ODBC data sources include many
databases, such as MySQL® and Microsoft Structured Query Language (SQL) Server, and
applications such as Microsoft Excel.

4.4 Form Sets
Form Sets provide a Client user a simple means of saving and reusing a collection of related
forms for another task.. For example, a specific folder for a mission may have a set of forms: a
Commander's Dashboard, a Logistics form for each unit, or a set of interconnect status forms.
Unlike authoring forms in the Designer, this feature provides Client users a ‘run-time’ capability
to add forms to their workspace or workgroup.

4.5 Important CommandLink Concepts Summary

1. Form

A CommandLink form is like a paper form, except that CommandLink forms enable
people to capture and share data electronically.

 23

2. Collaboration

Collaboration provides a means for sharing the information on a form among multiple
users. Forms stored in workgroups are collaborative.

3. Component / Widget

A component or widget is a display element on a form. Components typically have a
label and a field for entering a value.

4. Container

Containers are used for grouping and holding widgets. Containers are important because
they provide a means for laying out forms in attractive and useful ways.

5. Template

A template is a re-usable building block for creating forms. Templates look just like
forms -- except that they are intended to be incorporated over and over again in forms.
Like forms, templates are composed of components that are organized within containers.

6. Workspace / Workgroup

Workspaces and workgroups provide a means for storing and organizing forms.
Workspaces are private storage areas; workgroups are public storage areas.

7. Data linking

Information on one form can be linked to another form, meaning that any changes to the
first form will be reflected by changes to the second form. Data linking is an important
feature for collaboration.

8. Form Sets

Collections of related forms can be saved as a Form Set so that any user can easily create
a copy of those forms for a new purpose. For example, a set of personnel forms can be
saved as a set and created for each employee.

 24

9. Services

Services provide a means for populating forms with data from external sources such as a
database, an agent that extracts data from a web page, or a program that performs
calculations. The most common examples are database services.

10. Permissions -- Access and Authoring

Access permissions provide a means for controlling who can view or modify the fields on
a form. Authoring permissions provide a means for controlling who can change the
appearance of a form.

 25

5. Lessons Learned

5.1 Programming Languages and Methodologies
We noted above that much of the code SoftPro developed for this effort was written in Tcl/Tk.
(In fact, the DARPA program office strongly encouraged the use of Tcl/Tk.) For the most part,
Tcl/Tk was a good choice as long as we were prototyping. As CommandLink’s requirements
grew, Tcl/Tk’s limitations became more apparent. The language was particularly restrictive in
control of component layout on a form leading to a problem discussed below. The language is
an interpreted language with some performance limitations that restricted form complexity and
often resulted in slow performance for large forms.

The key development model for CommandLink was rapid prototyping and requirements
discovery through frequent delivery cycles to our user representatives from the SOF community.
Frequent prototype delivery facilitated valuable interactions to identify requirements. However,
the development team’s desire to be responsive to requested changes without proper software
development controls and policy introduced levels of complexity and resulted in sometimes
brittle software.

The transition to Java introduced new complexities and issues. Most significant was the desire
for backward compatibility with existing forms. While at the surface this was a reasonable
objective, it resulted in significantly inefficient use of development time and program resources.
The Tcl/Tk version 2.0 software was, by necessity of the language, not explicit in component
positioning within a form. Form rendering of components was based on order of expression
within the XML, within any container constraints such as column definitions – that is,
component position was relative. Therefore, the initial Java Client, which was developed as an
applet to provide a browser access to forms, was required to replicate the relative rendering of
components to mimic the Tcl/Tk software. This in itself was not necessarily a problem.
However, this notion of backward compatibility carried into the next phase of development
highlighted by a new authoring tool, the Designer.

The Designer did not maintain the paradigm of relative, and relatively uncontrollable,
positioning of components on a form. Rather it correctly maintained an explicit form location
for each component to allow authors precise control of form layout, appearance, and rendering.
At this point, the programming effort to save a few hours of recreation of forms created in the
prior ‘relative’ version of CommandLink by providing compatibility with the Designer resulted
in significant engineering hours towards that end that could have been better assigned. It also
was then readily apparent that the time spent building the initial Client applet to faithfully render

 26

the older forms was also somewhat wasteful. The fundamental software elements of the applet
for rendering components, providing active links and services were useful and reusable.
Engineering hours spent recreating faithful relative form rendering were indeed wasteful. The
absolute positioning expressed in the new Designer made that initial effort no longer useful
except for backward compatibility. The value of backward compatibility however, is
questionable given that the existing older forms were examples and tests, not production or
fielded forms. A few hours of effort to recreate an old form in the new Designer was traded for
hundreds of engineering hours providing backward compatibility.

Testing of the Java version raised significant new issues. As discussed above, our software
development methodology, developed and nurtured during the initial DARPA-funded portion of
this effort, called for frequent interaction with our user representatives as test and evaluation
resources, in addition to their role in requirements discovery. The process was to provide a
release candidate (a beta version in software release terminology), identify issues, and iterate on
the process until a final full product release. When the version 2.0 software was delivered for
testing in June 2004, user representatives were able to perform functional and operational testing
as had been the norm to date in the Active Templates program, working in an iterative fashion
with the developers who provided frequent releases with bug fixes. SoftPro understood the same
method of test and evaluation would be used with the first Java version 3.0 release candidate
delivered in December 2004 and developed under US Special Operations Command funding.
After a round of intermittent and problem-plagued iterations in January 2005, end-user resources
were no longer available for iterative testing and evaluation. SoftPro was still expected to
deliver a fully tested deliverable at the end of the contract. SoftPro mounted an extensive
internal and contracted testing effort resulting in a final product release in March 2005. As of
this report the software was still undergoing acceptance testing by the SOF community.

Lessons Learned

1. Scripting languages such as Tcl/Tk are very good for rapid prototyping and
development but limited in value for product deployment and support.

2. Tcl/Tk’s benefits erode as an application matures. We struggled with

a. The language’s lack of structure (Tcl/Tk is not object oriented)

b. Performance problems

c. Lack of features such as printing and browser support.

3. Develop, coordinate, and maintain an agreed-upon and prioritized set of requirements
scheduled in managed prototype cycles.

4. A cost/benefit analysis of backward compatibility is a valuable exercise towards useful
application of engineering effort versus recreation of prior forms.

 27

5. Test planning and resource assignment must be well-understood, costed and scheduled
at the beginning of a development effort.

6. As a product development activity, rather than a research activity, requirements and
acceptance criteria must be established at the beginning of the development cycle.

5.2 Usability
This effort, like many DARPA research projects, placed little interest in the niceties of the user
interface and mechanization that is critical to usability and user acceptance. In fairness, user
interface research was not a stated goal of the Active Templates Program. As the research
project evolved into a product development project issues of user interface design and
mechanization became a critical goal on the part of the user representatives, and thus a major
focus of development activity. This created a constant dynamic conflict between the core
research objectives of DARPA and the desire for a useable software tool by the end-user
community. The problem was exacerbated by limitations in user interface support imposed by
the selection of Tcl/Tk as the initial development language. When the Java re-engineering effort
occurred at the end of the research phase, one key focus was creating an intuitive, capable and
useable user interface for form design.

Lessons Learned

1. Inattention to proper human-engineered user interface design practices can prove
wasteful of engineering resources while compromising user acceptance.

2. The overall success or failure of a project may be independent of the success or failure
of the underlying research and instead be dependent on user acceptance of the product
solution.

5.3 Collaboration

We distinguish between document-centric collaboration models and attribute-centric models.
Document oriented collaboration allows users to work collaboratively on documents. Microsoft
Word and Microsoft Sharepoint are good examples of document oriented models. The document
in itself is the basis for collaboration -- people share the entire document; access protections exist
at the document level; and documents themselves are checked-in and checked-out.

Users in the mission-planning community made it clear that document-centric collaboration is
insufficient. Users need to be able to share individual bits-and-pieces of information, and they
do not want to have to check-in and check-out documents to propagate changes.

 28

Lessons Learned

1. Fine-grained collaboration models are more useful in mission planning/execution than
coarse-grained models.

5.4 Structured Data Model
Figure 3, Active Templates System Architecture, presented in Section 3.2 of this report,
illustrates the architecture for a set of mission planning tools integrated via a structured data
model. Active Templates team members spent a considerable amount of time working together
to develop a satisfactory data model. We encountered a number of practical problems, most of
which were related to a lack of understanding about the contents of the “right” data model. We
struggled over questions such as

1. How comprehensive should the model be?

2. Should the model be designed in a way consistent with existing databases or should it be
designed to support new AcT technologies that require new data representations?

3. Should the model be tailored for performance or extensibility?

4. Who can provide the domain expertise for creating a model useful in the real world?

None of these questions is trivial – in fact, the questions are difficult enough that AcT structured
model development failed. To be fair, the effort might have succeeded under other
circumstances. Model development activities were loosely coordinated, and no one on the team
was empowered to make and enforce decisions. Perhaps a more autocratic approach would have
yielded a model, though most likely no one would have really liked the end result.

Lessons learned

1. Structured data model development is difficult and time-consuming. Very strong
leadership is needed for the process to succeed.

5.5 External Services and Programs
As described in the AcT BAA solicitation, a key program objective was to integrate “symbolic
problem solvers and external data sources with simple but expansive visual interfaces”.
CommandLink provides a form services capability intended to address this need.

Form services are a good idea that was not fully exploited during the program. On the positive
side, CommandLink can access any ODBC-compliant database. In addition, CommandLink has
been integrated with the Fetch Agent Platform, a web-scraping application.

 29

The Fetch Agent Platform integration uncovered some important issues. For example, assume
that a Fetch Agent Platform agent has been created for gathering weather data at any place in the
world. The input to this agent might be a location. How should this location be specified? As a
latitude/longitude? As a UTM? There needs to be a way to specify both the input requirements
and output specification for every external agent connected to CommandLink. At the time when
SoftPro integrated with the Fetch Agent Platform, this infrastructure did not exist and hence
using the Fetch Agent Platform was an awkward process.

Imagine how the situation might have been different if CommandLink were deployed within a
rich web services framework. Most of the issues associated with external agent integration
would be handled by protocols that are just now beginning to be used.

We can even imagine very different roles for power users and developers. If developers were to
concentrate on deploying data sources and problem solvers within a web services framework,
then power users could concentrate on building active forms to solve real-world problems.

Lessons Learned

1. The broad goal of integrating active forms with external problem solvers and data sources
can be realized when web services are more widely available.

 30

Appendix A: Comparative Product Analysis
The following comparative analysis includes examples and discussion relevant to CommandLink
(Active Forms) version 2.0 as implemented in Tcl/Tk. In particular, discussion related to author
and user modes is obsolete with respect to the Java version 3.0 interface.

Introduction

Why so much interest recently in electronic forms? During the past two years, major players in
the software industry such as Adobe and Microsoft have released main-stream products for
creating and using forms. While Adobe and Microsoft were implementing their products,
DARPA was funding the Active Templates program, an effort focused on enabling users to
create intelligent, forms-based interfaces. By mid-2004, both Adobe’s Form Designer and
Microsoft’s InfoPath were being sold commercially, and CommandLink, an active forms
application for the military, was being readied for deployment to Special Operations command
centers. Yet electronic forms have been around for years.

More is going on here than one might think. Adobe’s Form Designer and Microsoft’s InfoPath
are essentially evolutionary products. They extend familiar ways of thinking about computing.
Over the years, users have become accustomed to creating and sharing documents using tools
like MS Word and MS PowerPoint. Form Designer and InfoPath provide the means to
manipulate a different kind of document – electronic forms. Granted, Form Designer and
InfoPath have some very powerful new features, but for the most part these are evolutionary
tools.

In contrast, DARPA’s intention for the Active Templates program was considerably more
ambitious. The early tag line for the program was “spreadsheets for planning”. Both terms in
the tag line are important – “planning” because the intention was to provide users with powerful
tools for solving hard military planning problems and “spreadsheets” because the capability
should be provided in a framework which users can configure however they need. The program
objective for Active Templates was to bring powerful knowledge-based planning tools under
user control. As such, Active Templates is the successor to DARPA research that started with
the Strategic Computing Initiative in 1983 and continued through the ARPA Rome Planning
Initiative (ARPI) which spanned the 1990’s (Figure A-1).

The Strategic Computing Initiative Program focused considerable attention on a set of core
technologies such as hardware systems, vision, speech understanding, and expert systems.

 31

Application development programs such as the Pilot’s Associate provided a venue for applying
these technologies to hard problems. Roland and Shiman [1] argue that R&D activities in
hardware systems and speech understanding were successful, while vision and expert systems
development were disappointing.

Figure A-1: Active Templates Historical Context

The knowledge-based systems R&D funded by DARPA during the past 20 years range from
early development of expert system shells, through development of associate systems, and
implementation of intelligent planning and scheduling tools. Much of this work was a precursor
to current thinking about intelligent agents.

The DARPA Active Templates (AcT) program has served as a test bed for many of the ideas
associated with agent-based intelligent forms (ABIF). The AcT program had two areas of
emphasis: to develop the basic concepts and prototype software for realizing the vision for
intelligent forms; and to deploy at least a few working forms applications to military users,
specifically command staff planners in the Special Operations community.

What is an “agent”? The Massachusetts Institute of Technology (MIT) Media Laboratory
defines an agent as “software that acts as an assistant to the user rather than a tool, learning from
interaction and proactively anticipating the user’s needs” [2]. Carnegie Mellon researchers have
a slightly different take: “an agent is an autonomous, (preferably) intelligent, collaborative,
adaptive computational entity. Here, intelligence is the ability to infer and execute needed
actions, and seek and incorporate relevant information, given certain goals” [3].

Regardless, agents are different from tools. Though not described as an agent-based application,
the DARPA Pilot Associate (PA) program is a source for many of the ideas associated with
agents. The PA was a collection of cooperating expert systems designed to aid pilots in air-to-air
combat. It was designed to monitor the combat situation, suggest plans for countering threats;
and, when given the right permissions, to act on the pilot’s behalf. Though the PA was not

 32

deployed, the principles resulting from this R&D represent what the AI community was thinking
15 years ago about human-computer interaction. Today’s vision for agent-based intelligent
forms has a lot in common with associate systems.

Commercial Form Tools
Although they are useful, feature-rich, and practical, the form-based applications available today
fall short of the ABIF vision. Both Adobe Form Designer and Microsoft’s InfoPath exemplify
conventional ways of thinking about software: these products are tools, not agents.

Business Problems Addressed
Form Designer is a component of Adobe’s strategy to provide “intelligent document” solutions.
Adobe describes Form Designer as a product which:

…enables companies to replace inefficient, paper-based forms processes with intelligent,
accessible and secure electronic data capture solutions to improve organizational agility
and productivity. [4]

From Adobe’s perspective, organizations suffer because they have large paper backlogs. The
route out of this morass is to enable business processes with intelligent documents for gathering
and managing information and to integrate information with an organization’s existing systems

Microsoft’s intentions are a bit different. Though recognizing that InfoPath provides an effective
way to gather business data, Microsoft has a broader intent:

Key decision makers are often unable to make informed decisions because the
information they need is trapped within documents or databases in another part of the
organization. Technologies such as the Extensible Markup Language (XML) and Web
services have been helpful in improving business processes from server to server, but to
date they have not been connected directly to information workers at their desktops. This
has meant that information workers have not had a way to interact with Web services
directly to access and use the enterprise information that they need. [5]

Rather than just being a means for gathering information from people, InfoPath is intended to be
a means for integrating an organization’s various back-end systems via forms-based interfaces.
End users benefit because they get the information they need; IT departments benefit because
development and deployment are easy.

 33

Using Forms
From a user’s point of view, Form Designer and InfoPath provide similar kinds of functionality.
Form Designer allows the creation of forms that look exactly like their paper counter-parts; and,
since the forms have a degree of intelligence, filling out a form may even be easier than
completing a paper form. Figure A-2 is an example of a typical Adobe form – in this case, a
form that might be used by a company’s Human Resources department to capture employee
benefit enrollment information. To a great extent, the “intelligence” in this form is reflected in
its ease-of-use; it has a number of features to keep users from making common mistakes.
InfoPath has equivalent capabilities.

Figure A-2: A Typical Adobe Form

Collaboration
The first problem in any discussion of collaboration is defining the term. Are applications like
MS NetMeeting and WebEx™ collaborative? Are video-sharing systems collaborative? Do
document servers support collaboration? All of these examples represent forms of collaboration.
Adobe and Microsoft happen to hold similar views: collaboration in their form products involves
the sharing of forms. An Adobe or Microsoft form is a document, analogous to a MS Word
document or a MS Powerpoint slide. Collaboration occurs in two ways. Users can share
documents informally, or they can use documents in pre-defined business processes.

 34

For example, using Form Designer, people can collaborate by E-mailing forms to one another or
by working within a process that is managed by the Workflow Server. InfoPath users can export
form data to MS Excel or mail forms to other users with MS Outlook. If an organization runs
MS SharePoint, users can store forms on a common server to facilitate collaborative editing or
viewing of the form. Forms can also be integrated with business processes using Microsoft’s
BizTalk server.

When defined in these ways, collaboration is a fairly static process. Neither Adobe Forms nor
Microsoft InfoPath can learn a workflow – process steps need to be defined in advance. Note
that this collaboration model is coarse-grained: documents are the currency exchanged between
users.

Designing Forms
Anyone should be able to use an Adobe or Microsoft form; however, not all users will be able to
design forms. The Adobe Form Designer looks and feels like a software Integrated
Development Environment (IDE).

Figure A-3 illustrates the Adobe Form Designer interface. The left-hand side is a canvas for
form design. Form elements, such as text boxes or radio buttons, are dragged-and-dropped onto
the canvas and positioned wherever they need to be. The designer is flexible enough to allow the
recreation of essentially any paper form.

Figure A-3: Adobe Form Designer Interface

 35

Designing a form with InfoPath is considerably different from doing so with Adobe Form
Designer. InfoPath is advertised as a tool for editing XML documents; accordingly when a
designer creating an InfoPath form is actually creating an interface for viewing an XML file.
Figure A-4 illustrates InfoPath’s design mode. The left-hand portion of the display is a design
space; layout containers (such as multi-column tables) and controls (e.g., text boxes, date
displays, drop-down boxes) can be dragged-and-dropped onto the form canvas. Working with
Adobe Form Designer is analogous to working with a drawing program; working with InfoPath
is like working with a Word document. While flexible, InfoPath does not provide the same kind
of pixel-by-pixel layout control offered by Adobe’s product.

Designers can begin creating a form one of two ways: by designing a New Blank Form or by
designing a New Form from a Data Source. Why the distinction? InfoPath forms are represented
using XML; and, consistent with conventional practice, Microsoft makes a clear distinction
between the XML specification for a form’s data source and the XML for its presentation.
Every control on an InfoPath form is bound explicitly to an element in the form’s data source,
and form designers need to be mindful not only of how a form appears but also how form
controls map to the form’s data structure.

Figure A-4: InfoPath Design Mode

Designing a new blank form is the simpler case, one that does not require much awareness of the
form’s data schema. As the designer adds and edits controls, InfoPath updates the form’s
underlying schema. In this case, the user need not be concerned about the data schema.

 36

Designing a new form from a data source is a more involved. InfoPath supports three kinds of
data sources: XML schemas, ODBC data sources (SQL Server and Access only) and Web
services. Figure A-5 illustrates form design using an ODBC data source.

Figure A-5: Form Design from an ODBC Source

In this example, the form designer’s first task was to find an ODBC data base to serve as a data
provider; InfoPath provides a wizard for locating a data base and selecting tables. (All of the
tables shown on a form have to be from the same data source; mixing and matching data sources
is not supported.) Once a data source is specified, InfoPath creates the data source specification
for the form and two form views, one for querying the data source and one for entering data.
Because the form is tied to the data source schema, and the data source mirrors the database
structure, flexibility is limited. Suppose, for example, that a designer wanted to add a new field
to the form to capture the name of the person who enters new item information. Adding a new
control is possible – but the form’s data source has to be modified first with a new field so a
mapping can be made between the control and the data source. Unfortunately, since the new
field is not stored in the database, there is no way to retrieve what is entered.

Implementing Complex Behaviors

Both Form Designer and InfoPath enable users to design functional forms without an inordinate
amount of training or a degree in computer science. However, there are limits to what users can
implement without at least a basic knowledge of programming.

 37

Behind its display interface, an Adobe form is a collection of objects with properties, methods,
and events. The Property Browser provides an easy way to set the attributes of an object such as
its background color, size, position, and font. Methods are actions that change the state of an
object. Events are responses to an external action, such as a mouse click. Both methods and
events are implemented through scripting using either VBScript, Jscript, or a default scripting
language provided by Adobe. In any case, designing forms with complex functions is beyond
the capabilities of ordinary users.

Building forms which exhibit complex behaviors is equally challenging in InfoPath and requires
programming using either Jscript or VBScript. Form behavior can be customized by writing
code for data validation, for error handling, for handling specialized data submission and
merging requirements, and for accessing external data sources. InfoPath provides a COM-based
object model for interacting with forms and the XML documents that are used for representing
these forms. Programming with this model would clearly be beyond the capabilities of ordinary
users.

AI Influence On Commercial Products

Adobe Forms and InfoPath are feature-rich products. But do they have any capabilities at all
which suggest influence from AI research? Regrettably, the answer is no. These are interesting,
useful, powerful, and commercially viable applications, but they do not exhibit any real
intelligence. Ten years ago, people collaborated by sharing MS Word, MS PowerPoint and MS
Excel documents. Today’s forms-based applications enable users to collaborate by exchanging
forms, they make it easier to gather information from data sources and to leverage forms in work
processes. Adobe Forms and InfoPath are very good tools.

However, these are not intelligent forms. Other than being able to perform error checking or
other low-level tasks, the forms have no understanding of the tasks being performed, how the
user can be aided effectively, or how forms should be adapted to suit the situation at hand.

SoftPro Active Forms

Business Problems Addressed

By the late 1990’s considerable additional research had been done at DARPA related to planning
and scheduling. However, with a couple of exceptions, military officers still used manual

 38

processes – and tools like Microsoft Office -- for building plans and monitoring their execution.
Figure A-6, from a DARPA program review in 2000, summarizes the problem [6].

Figure A-6: Military Planning is Predominantly Manual

One of the key issues identified in this viewgraph is the need for structure. Products like MS
PowerPoint and MS Outlook lock data in an unstructured format that prevents the sharing of data
between applications. Most importantly, as long as users rely on tools like Office, they will not
be able to fully exploit the intelligent planning, scheduling, and decision making technologies
that were developed through Strategic Computing and ARPI. For example, if a change in
mission start time (H-hour) is communicated in an E-mail, it cannot be automatically propagated
to automated scheduling tools. For all intents and purposes, the information is useless with
respect to easy integration with automated systems.

By observing what military planners do, Active Templates researchers were able to derive a
number of high-level requirements.

• First, forms have to be very flexible, just like Microsoft Office products. Since SOF
missions are guaranteed to evolve over time, users must be able to create and modify
forms to suit their particular needs.

• Because mission management is a collaborative and time-sensitive process, forms must
be collaborative. Users must be able to share and track changes to data in real-time to a
very fine granularity -- at the level of individual attribute values, not simply documents
at the document level.

 39

• Since mission planners may have their own spreadsheets and databases, they need to be
able to incorporate information from multiple data sources on the same form.

• Military planning has some unique requirements, and forms need to provide display
components that address these requirements – e.g., flexible date/time management,
collaborative logs, security headers, and so on.

Notwithstanding the requirements described above, one of DARPA’s key objectives was to use
active forms as a means for integrating intelligent planners, schedulers, and decision aids into
military planning processes.

Using Active Forms

As is the case for Adobe forms and InfoPath, using an Active Form is a fairly simple process.
The kinds of display elements one would expect are available – entry fields, list boxes, radio
buttons, tables, graphical elements, and so on. Users can read and modify forms stored on their
local machine (i.e., private forms) or forms stored on a public server. Figure A-7 illustrates a
form designed for monitoring key indicators during planning and execution. With the possible
exception of notebook pages (which enable users to organize large amounts of data), this form is
much like an Adobe or Microsoft form.

Figure A-7: An Active Form for a Command Center

 40

Collaboration
However, Active Forms have a number of unique features that reflect the particular domain
problems they were designed to solve. Remember that mission planning and execution tracking
is a real-time, collaborative process. When an Active Form is saved to the public server, it
becomes a shared item that, subject to access permissions, can be viewed and edited
simultaneously by multiple people. For example, if a Colonel is viewing a form which displays
information for Forward Staging Base Bravo, and a Major updates the data on that form or a
related form, the Colonel will see these changes immediately, without having to refresh or check-
out the form again. Access permissions available on every form field provide fine-grained
control for viewing and changing data.

Designing Forms
Active Forms have two modes: an author mode for designing forms and a user mode for filling
out and interacting with forms. (Active forms can also be deployed to the web.) An Active
Forms author builds a form by arranging display elements on a grid. Containers (e.g., frames
and notebook pages) provide organizing flexibility and can be configured to have any number of
columns. Figure A-8 illustrates a form in authoring mode.

Figure A-8: Active Forms Authoring Mode
Authors add components by clicking on an editing icon and then making selections from a
wizard. By default, new components are inserted at the bottom of a container, but they can be
dragged-and-dropped anywhere. Active Forms provides a library for storing reusable sets of
components or entire forms as templates. While it is possible to create many different kinds of

 41

forms, like InfoPath Active Forms does not provide the pixel-by-pixel control needed to exactly
replicate paper forms.

A typical component has the properties one might expect – width / height, font settings, and
access permissions, for example. In addition, form components include a Details property which
provides a way to annotate the field and a source. A component’s source may be another
component (perhaps located on a different form), a database, a web service, a process, or simply
user-entered data. Connections to databases and web services are provided through a Form
Service.

Form Services are a powerful extension of the sourcing concept that provides for adding
intelligence to a form through a user-friendly wizard interface. In simple cases, a service might
be an ODBC-compliant database query. A service might also be a call to a web service or an
intelligent agent. Figure A-9 illustrates how a simple database service can be inserted into a
form. Services have inputs provided by form components and generate outputs connected to
other form components. In this case, the form author has used a wizard to specify the single
input field for a query. The service generates a number of output values, as shown in the figure.
Some of these values are mapped to existing form components, others are de-selected (and will
not show up on the form), and the remainder will appear on the form in components
automatically created when the wizard completes. Unlike InfoPath, a single form can apply Form
Services that draw data from multiple, independent data sources. Active Forms currently link to
any ODBC data source and to external agents such as Fetch Agent Platform, a web-scraper.

Figure A-9: Forms Service Interface

 42

Implementing Complex Behaviors
Active Forms, Adobe forms, and InfoPath share similar constraints with respect to
implementation of complex behaviors: there is a limit to what ordinary users can do. Complex
functions often require programming. In Active Forms, three kinds of implementation of
complex behaviors are possible: new display components may be created building on the core
component architecture; connections to external processes can be made through Form Services
or action buttons; or creating an application wrapper that manages form interactions.

Conclusions
When measured against the benchmark established for an agent-based intelligent form, active
forms suffer from some of the same shortcomings as Adobe Forms and InfoPath. For example,
active forms are neither ‘active’ or ‘intelligent’ in the way we would like them to be. Remember
that we have defined an agent as an “assistant to the user rather than a tool, learning from
interaction and proactively anticipating the user’s needs.” Though they have a number of very
useful capabilities, active forms are still more like tools than user assistants. In addition, active
forms cannot yet learn from the user.

However, there are reasons for thinking that active forms are a key step in the right direction.
Though the difference may not be obvious to people who are authoring or using simple forms,
active forms do have some features that make them significantly different from different from
other commercial products. Most importantly, while Adobe Forms and InfoPath treat forms as
documents, active forms are collections of attribute-value pairs that are displayed as forms.

This apparently minor difference has some significant implications related to current capabilities
and future utility. For example, the currency exchanged during collaboration is fine-grained in
an active form – changes to a single attribute are immediately available to other people. Data
linking is supported at an attribute level. Read / write permissions are controlled by attribute.
Access to external components (e.g., Fetch Agent Platform agents) is managed at the attribute
level.

The distinction between forms-as-documents vs. forms-as-Attribute-Value-Pair (AVP)-sets
provides the foundation for capabilities needed in ABIF’s. We can think of active forms as a
framework for gathering information, as an environment for controlling the invocation of
external agents, and as a mechanism for displaying results. Active forms can already do these
kinds of things.

 43

What is lacking is an infrastructure that can be exploited for making forms more intelligent.
Databases, software interfaces, and communication protocols were designed for programmers,
not users. This is perfectly reasonable since programmers have historically been responsible for
application building. InfoPath exemplifies this way of thinking: how many users really care
about editing XML documents?

We can think of this problem as a packaging issue in part. We clearly need libraries of
intelligent agents as a starting point. Not many of these agents exist yet. In addition, once agent
libraries are available, form developers will need to know about the components in the libraries
and how they can be used effectively. Put in simple terms, rather than providing users with a
view of a database’s tables, we might expose a set of business objects that represent the
database’s contents. For external components (e.g., a scheduling algorithm), we need to provide
users with meta-data which describes the component’s inputs, outputs, functional capabilities,
limitations, and so on. These are not new ideas – the web community has been working for some
time on languages such as Resource Description Framework (RDF) and Ontology Web
Language (OWL) for supporting agent-to-agent communication. The same techniques could be
used for describing external components to users.

A second problem is cultural. To really encourage the adoption of ABIF’s, we need to rethink
what users do and what programmers do. In most organizations, users describe what they want
an application to do and they wait for the information technology staff to deliver a product. We
clearly cannot train all the users to be developers, but we can make it easier for users to
assemble intelligent forms. Rather than building complete applications (including human
interfaces), developers should concentrate on building components that can be integrated on
forms. For example, for military planning, it might be useful to have a component for
calculating a best route from point A to point B given various aircraft types, weather conditions.
Users certainly could not build this component, but they might want to use it in a variety of
contexts.

Form adaptation – learning – is another capability enabled by an AVP-centric design approach.
Simple adaptation is exemplified by forms that can remember default values for form fields or
the location of a preferred data source. These kinds of capabilities are helpful, but they only
scratch the surface of what might be done. For example, we might want to be able to observe
how a collaborative team solves a problem with an emphasis on what forms are used, who
provides data, and how information flows among team members. Given knowledge of a process,
gained through observations of what people really do, our forms environment should be able to
actively aid that team, or another team, performing a similar task. This capability does not exist
yet, but active forms interfaces do exist and machine learning components exist also. Coupling
the two is not trivial, but it is not infeasible either.

 44

Given progress in these areas, we could be well on our way towards realizing the vision for
agent-based forms. Adapting today’s computing infrastructure is no trivial task, nor is cultural
change. Today’s products give us insight about the payoff that will result from intelligent forms.

REFERENCES
[1] Alex Roland and Philip Shiman, Strategic Computing: DARPA and the Quest for Machine

Intelligence, 1983 – 1993, The MIT Press, pp. 208-214, 2002.

[2] http://agents.media.mit.edu/index.html

[3] http://www-2.cs.cmu.edu/~softagents/intro.htm

[4] http://www.adobe.com/products/server/formclient/main.html

[5] “Microsoft 2003 InfoPath Product Guide”, pg. 1.

[6] Lt. Col Doug Dyer, “Active Templates Semi-Annual Program Review”, November, 2000.

 45

Appendix B: Requirements Specification

1. Introduction

1.1 Purpose
This document describes the derived, detailed requirements for hardened, deployable versions of
CommandLink developed in Java as a web-enabled and standalone application.

1.2 Scope
This document does NOT address:

• Features and functions that might be desirable but are not necessary. Not all
functionality described in this specification is scheduled for initial version 3 delivery but
is included for completeness in follow-on development cycles.

• Issues for new research and development.

2. Detailed Requirements
The following requirements are intended as a baseline for reimplementation of the Tcl/Tk
CommandLink application into a Java web applet for a user client, and a standalone Java
application for authoring and form use. Requirements marked with a line-through are obsolete
or redundant, but retained to correspond with, and reuse prior test plan and compliance matrices.

2.1 Templates and Forms

Detailed Requirements

2.1.1 CommandLink shall provide a means for creating forms.

2.1.1.1 A form may be composed of any of the elements described in
Requirement 2.3.1.

2.1.1.2 A form may include header/footer information such as security markings.

2.1.1.2.1 Markings and font color shall include: UNCLASSIFIED (green);
CONFIDENTIAL (blue); SECRET (red); TOP SECRET (red).

 46

2.1.1.3 A form may include descriptive attributes (meta-data) that can be used a search
criteria to locate the form.

2.1.1.3.1 Descriptive information shall include a text entry description below the
security header and the following information:

Figure B-1: Typical CommandLink Form

2.1.1.4 A form canvas shall be provided with the following characteristics:

2.1.1.4.1 Author-specified sizes based on printable areas of standard pages and
orientation, or custom sized based on pixels or inches.

2.1.1.4.2 The author shall be able to change canvas size by selecting alternatives
or by dragging page boundaries. If the canvas is dragged larger than
specified page boundaries, a boundary mark shall be displayed at the
author’s discretion.

 47

2.1.1.4.3 Components placed on the canvas shall ‘snap’ to an author-specified
grid interval.

2.1.1.4.4 A means of selecting multiple-components shall be provided. The
author shall be able to align the selection based on left- or right-most
edge, or centers. The author shall be able to evenly distribute the space
between selected objects horizontally or vertically.

2.1.2 Users shall be able to store forms on their own machine (private forms).

2.1.2.1 A user shall be able to edit the structure and data on a private form at any time.

2.1.3 Users shall be able to store (“publish”) forms on a server (public form).

2.1.3.1 The user who publishes a public form is its owner. The owner of the form shall
always have access to modify the structure of a published form.

2.1.4 CommandLink shall provide an editor for creating and modifying form templates.

2.1.4.1 A template may be composed of any of the elements described in
Requirement 2.3.1.

2.1.4.2 A template may be constructed by incorporating other templates.

2.1.5 Users shall be able to store templates on their own computer (private templates) or
on a public server (public templates)

2.1.5.1 The creator of a private template shall be able to modify or delete the template.

2.1.5.2 Access controls shall be provided for templates stored on the public server.

2.1.5.3 Users shall be able to download public templates to their local machine for off-
line editing.

2.1.6 A form may be composed by incorporating one or more templates.

2.1.7 CommandLink shall provide an embedded help system for form creation.

2.1.8 An author shall be provided a means to create a named ‘Form Set’ based on a
selection of related forms. A Form Set shall maintain all internal links between forms in
the set as relative references; links external to the Form Set shall be maintained as absolute
references to the specific form.

 48

2.1.8.1 An author shall be provided a means to instantiate a Form Set.

2.1.8.2 The Form Set shall be created as a set of forms with the same names as the
original forms in a folder named as designated by the author.

2.1.8.3 Relative link references shall be resolved within the instantiated Form Set to the
specific, newly-created form.

2.1.9 An author shall be provided a means to create a ‘Parent’ form. The Parent form
shall have two unique properties: an author can spawn a copy of the form intended for
data entry (Child form); and components on the Parent may be designated to accumulate
data from that component on all related Child forms.

2.1.9.1 The author shall have means to designate numeric components on the paernt form
that accumulate the data in that component from the Child forms. That
component on Child forms is a data source.

2.1.9.2 The author shall have means to designate text components on the Parent form that
concatenates the data in that component from the Child forms. That component
on Child forms is a data source.

2.1.9.3 Child forms shall be able to be renamed, relocated, or deleted.

2.1.9.4 Child forms may not be authorable.

2.1.9.5 Authoring changes shall be permitted to a Parent form, including addition of
accumulated data components. Changes are not propagated to existing Child
forms.

2.1.9.6 A Child form may itself act as a Parent form for its own Child forms.

2.2 Form Storage and Organization

Detailed Requirements

2.2.1 Two form storage areas shall be supported, known as workspaces and workgroups. A
workspace is a private area, accessible only to an individual user. A workgroup is a public
area for shared forms and templates.

 49

2.2.1.1 Users shall be able to organize forms in a workspace or workgroup hierarchically
in folders.

2.2.1.2 Users shall be able to create and modify their own workspaces.

2.2.1.3 Users with access permission shall be able to create a workgroup.

2.2.1.4 Users shall be able to identify who is currently logged into a workgroup.

2.3 Form Elements

Detailed Requirements

2.3.1 CommandLink shall provide the following components:
• Alphanumeric, single line entry

o An entry mask shall be user-definable restricting characters to alpha, numeric,
uppercase, or lowercase and allowing non-alphanumeric characters to be
automatically inserted: e.g. (123) 456-7890

• Alphanumeric, multiple line entry

• Label

• Pull-down selection entry (often referred to as a ComboBox)

• Numeric, single line entry in integer or decimal

o Conditional formatting shall allow author to assign values or ranges of
numeric values to set font style (bold, italic, underline) and font color.
Selection of values shall include: between; not between; equal to; greater than;
less than.

• Numeric slider bar

o Conditional formatting shall allow author to assign values or ranges of
numeric values to set font style (bold, italic, underline) and font color.
Selection of values shall include: between; not between; equal to; greater than;
less than.

• RadioButtons

• CheckButtons

• Status Indicator whose value is represented as one of four colors: grey, red, yellow,
or green.

• General purpose date and time component for display of data in various formats,
including military or civilian, and relative to specified time zones.

 50

• Coordinate component capable of display and conversion between Geodetic, UTM
and MGRS reference systems.

• Image component for display GIF, JPEG and BMP image types.

o Images shall be cached to the local drive in workspace forms or to the server
in workgroup forms.

• A table component to organize spreadsheet-style data.

o Two types of tables shall be provided: Table and Table Log. Both types shall:

 Provide for designation of columns including: name; component type;
width in pixels; justification (left, center, right); source, and
component-specific options. The ‘source’ option shall permit
designation of another column as the source value for the column
within a row.

 Allow the user to add, edit, delete, copy, and paste rows of data.

 Allow the user to search by designating all columns or a particular
column, and specifying a value that is or is not, contained or equal to
the table data. The search may be designated case-sensitive. The user
may specify multiple criteria and whether any or all criteria must
match. Matching rows are highlighted with the ‘search highlight’
color. The search is cancelled by deleting the criteria.

 Allow the user to filter by selecting all columns or a particular column,
and specifying a value that is or is not, contained or equal to the table
data. The search may be designated case-sensitive. The user may
specify multiple criteria and whether any or all criteria must match.
Rows not matching the criteria are hidden from display and the user is
provided an indicator that the filter is active. The filter is cancelled by
deleting the criteria.

 User may resize column widths and retain that setting between
sessions.

 User may select a column to sort ascending or descending. User must
be able to cancel the sort and return to default record entry order.

 When a Table is ‘web published’, rows shall reflect displayed sort
order.

o Log Table shall provide the following additional functions in addition to the
standard Table:

 When a Log Table row is added, the user is designated as row owner.

 51

 A row owner, or any user with form author permission shall be able to
designate a row as Publish or Suppress.

 When a Log Table is viewed by a user without form author
permission, suppressed rows shall be hidden. Owned rows shall
always be visible.

 When a Log Table is ‘web published’, all suppressed rows shall be
hidden.

2.3.2 CommandLink shall provide container components for organizing and layout of
form components. These container components shall include:

• Frames, which allow components to be organized as a list (vertical organization) or as
a table (components structured in rows and columns)

o The author shall be able to place components at will inside a frame obviating
the need for a column property. The author shall be able to drag the frame to
a desired size, in width and height, which shall be saved as a frame property
for display.

• Tabbed notebooks which allow components to be organized on separate tabbed panes.

2.3.3 Users shall be able to annotate components with details to record information
relevant to a data element.

2.3.3.1 A convenient user interface mechanism shall be provided to allow users to show
or hide the details.

2.3.4 CommandLink components and form components shall be configurable.
Table B-1 specifies settings which can be controlled by the form author. The table has been
updated here and in the Parent requirements document to add settings omitted in the
original. Derived requirement: Property settings shall be savable as defaults for creation
of new, like components.

Table B-1: Form Element Configuration Settings

Element Type Configuration Settings Notes

Components

Alphanumeric entry,
single line

Label, width, help text, font, font
size, font style, font color, entry
mask

Entry mask defined in 2.3.1

 52

Alphanumeric entry,
multiple line

Label, width, height, help text, font,
font size, font style, font color

Height in rows

Alphanumeric label Font, font size, font style, font color,
alignment, wrap

Alignment is one of {left, right,
center}; word wrap specified in
character width

Numeric entry, single line Label, width, help text, font, font
size, font style, font color

Format as integer or decimal

Numeric slider bar Label, width, help text, font, font
size, font style, font color, values

Values is a pair of integers with the
first integer representing the lower
(left) end of the scale and the second
representing the upper (right) end of
the scale.

RadioButton group Button set label, help text, font, font
size, font style, font color, values,
orientation

Button set label is a label for the
entire set. Values specifies the
labels to be associated with
individual buttons. Selection
choices as space separated list;
multi-word choices enclosed in
double-quotes or braces. The
number of individual labels
determines the number of buttons
displayed. Orientation controls
horizontal or vertical presentation of
the button set.

Check button Label, help text, font, font size, font
style, font color

ComboBox Label, help text, font, font size, font
style, font color, width

Selection choices as space separated
list; multi-word choices enclosed in
double-quotes or braces. Ascending
or descending list sort is optional.

Status indicator Label, width, help text, font, font
size, font style, font color, indicator
color and values, text/numeric mode

Status indicator provides grey,
green, yellow, and red display states.
Threshhold values may be specified
as {default value, green value,
yellow value, red value}. Out of
range values display grey. User may
designate value specifications as
numeric ranges or discrete text
values.

Date / time component Label, width, date/time format, time
zone, help text, font, font size, font
style, font color

Date / time format is user-
configurable. Time zone may be
specified in either military or
civilian format.

 53

Coordinate Label, help text, font, font size, font
style, font color, mode, format,
orientation

Mode is one of {Geodetic, MGRS,
UTM}}; Geodetic format is one of
{DecDeg, DegMin, DegMinSec}.
Orientation is H (horizontal) or V
(vertical)

Image Label, width, height, help text, font,
font size, font style, font color,
image source, scale, polling

Image source is a path on the local
drive or an image URL. Images may
be GIF, JPG or BMP formats. Scale
is 25%, 50%, 100%, 200%, or
400%. Polling shall be in seconds,
minutes, hours, or days to force
refresh of image from source, if
desired.

Table Label, width, height, help text, font,
font size, font style, font color,
uppercase, header color, alternate
row colors, search color, selected
row color

Containers

Frame Label, font, font size, font style, font
color, background color, show/hide
label, shadowed label, 2 header
colors, columns, label wrap,
show/hide border

Notebook Label, background color, show/hide
label, shadowed label, 2 header
colors

Notebook page Label, font, font size, font style, font
color, background color, show/hide
label, shadowed label, 2 header
colors, columns, label wrap,
show/hide border

2.3.5 CommandLink shall allow undo and redo of form structure changes.

2.3.6 On opening an existing Tcl-authored form, a form author shall be provided an option
to convert the form to the Java file format. Authoring Tcl-authored forms in the Java
system may require conversion to the Java file format. The Java file format does not need
to be compatible with the Tcl version for authoring or use. The Tcl file format must be
faithfully rendered and fully functional in the Java user client.

 54

2.4 Data Sourcing

Detailed Requirements

2.4.1 Users shall be able to link a data element on one form to a data element on another
form. The data element providing the value is the source; the data element receiving the
value is the target.

2.4.1.1 A simple interface shall be provided for linking data elements.

2.4.1.2 A mechanism shall be provided for disconnecting a data element from its source.

2.4.1.3 A means to aggregate text or accumulate numeric totals from related form
elements shall be provided.

2.4.2 CommandLink shall provide a means for accessing form services. Initial form
services may include data in ODBC-compliant data providers and external reasoners. Note
that the user must have properly defined ODBC sources for their machine using the Windows
ODBC administrator utility.

2.4.3 An interface shall be provided which allows users to specify which form services are
visible to CommandLink. The interface shall provide for simple understanding of the
purpose, inputs and outputs of a form service. This function shall not have any effect on
the Windows ODBC configuration.

2.4.3.1 Users shall be able to query for records in a database and display that data in a
form.

2.4.3.2 Users shall be able to display records in a row-oriented manner.

2.4.3.3 Users shall be able to display the data attributes in a record in separate data
elements on a form.

2.4.3.4 A user interface shall be provided which allows user to query for records based on
• The data provider name

• Table name

• Selection criteria including

o Operators { = <= >= <> LIKE }

o Booleans for creating complex queries { AND OR }

 55

2.4.3.5 Users shall be able to specify a polling interval for periodically refreshing a query.

2.4.3.6 Users shall be able to select and retrieve information from a data agent.

2.5 Collaboration Model

Detailed Requirements

2.5.1 Users shall be required to complete profile information prior to initial access of
CommandLink.

2.5.2 Users shall be required to successfully login to CommandLink. (This requirement
was redacted in the Tcl version).

2.5.3 The form owner may authorize other users to edit a shared form structure.

2.5.3.1 When a shared form has been modified and saved, users with that form open will
be notified of the change and provided a means to refresh their form structure.

2.5.4 Mechanisms for controlling data access shall be provided.

2.5.4.1 Each form shall have an owner tag.

2.5.4.2 The owner of a form shall be able to assign access permission at the form,
container and form element levels to:

• “Everyone”, meaning that the element is accessible by all users.

• Group(s), meaning that named groups have access as assigned.

• Username(s), meaning that individual users have access as assigned

2.5.4.2.1 Containers and components shall inherit the access permission of the
enclosing container.

2.5.4.2.2 Access permission shall be read, write, or hidden. ‘Read’ means that
assigned users can view the element value, but only the owner can
modify it. ‘Write’ means that assigned users can view or modify the
element value. ‘Hidden’ means that the form elements within that
container will be suppressed

2.5.4.2.3 Precedence shall be username – group – ‘Everyone’. Within each
class precedence shall be write – read – hidden.

 56

2.5.4.2.4 Default permission shall be ‘Everyone Write’.

2.5.5 Subject to access limitations, multiple users shall be able to view and provide data
inputs to forms stored in workgroups.

2.5.5.1 Most recent data posted to the form shall overwrite existing data.

2.6 Data Element Status

Detailed Requirements

2.6.1 CommandLink shall provide status information for form data elements.

2.6.1.1 Users shall have the option of showing or hiding status information.

2.6.1.2 Status information shall include the last update time for the element

2.6.1.3 Status information shall include the source for data in the field.

2.6.2 Content change notifications shall be provided for form data elements.

2.6.2.1 A visual indication shall be provided showing that a data element value has
changed.

2.6.2.2 Visual change indicators shall remain set until the user clears them. The human
interface shall provide a simple, one-click means for clearing change
notifications.

2.7 Printing

Detailed Requirements

2.7.1 The user shall be able to print the contents of a form in a style that is consistent with
the design and layout of the form elements.

2.7.1.1 Form header/footer shall print on each page

2.8 Connected / Disconnected Processing

Detailed Requirements

2.8.1 During a session, CommandLink shall provide a read-only view of a form and data
content if connection is lost, and restore full capability when connection is restored.

